网上有关“公理集合论的原理简介”话题很是火热,小编也是针对公理集合论的原理简介寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
19世纪70年代,德国数学家G.康托尔给出了一个比较完整的集合论,对无穷集合的序数和基数进行了研究。20世纪初,罗素悖论指出了康托尔集合论的矛盾。为了克服悖论,人们试图把集合论公理化,用公理对集合加以限制。
第一个常用的公理系统是E.F.F.策梅洛和A.A.弗伦克尔等提出的ZF系统。这个系统中只有一个非逻辑二元关系符号∈,非逻辑公理有:外延公理、空集公理、无序对公理、并集公理、幂集公理、无穷公理、分离公理模式、替换公理模式、正则公理。如果加上选择公理就构成ZFC系统。利用公理可以定义出空集、序对、关系、函数等集合,还可以给出序关系、良序关系、序数、基数,也可以给出自然数、整数、实数等概念。
通过元语言,也可公理系统中各公理之间的相容性和独立性,例如Cohen于1960年创立公理集合论中的力迫法,并用来证明ZFC与连续统假设CH独立。公理集合论发展很快,马丁公理、苏斯林假设等新公理新方法已被广泛使用,组合集合论、描述集合论、大基数、力迫法的研究也持续发展。
数学集合r表示什么
按名册征集。
读音:[diǎnjí]。
宋司马光《论屈野河西修堡状》:“若乘此际急于州西二十里左右增置二堡,每堡不过十日可成,比至虏中再行点集,此堡已皆有备,不能为害。”宋沉括《梦溪笔谈·故事一》:“优伶并开封府点集。”
在数学当中叫做点的集合。如:点用(x,y)表示。许多的点放在一起就组合成了点集。而{(1,1),(1,-5),(a,b),?,(-2,-3)}指(1,1),(1,-5),(a,b),?,(-2,-3)这些点放在一起组成的集合。
数学集合r表示实数集。
一、实数集简介
在数学中,R代表实数集。因为实数的英文单词是real number,所以实数集用R表示;实数可以直观地看作是有限小数和无限小数、实数和数轴上的点的一一对应关系,但实数的整体不能仅仅通过枚举来描述。
实数集通俗地说就是实数的集合,通常包含所有有理数和无理数,18世纪微积分是在实数的基础上发展起来的。但当时并没有实数集的精确定义。直到1871年,德国数学家康托尔首次提出了实数的严格定义。任何有上界的非空集(包含在R中)一定有上界。
二、实数集分类?
实数可以用两种不同的方式细分为两种类型:第一、按照有理数和无理数。第二、按照代数数和超越数。康托尔证明了,即使是代数数这一类(它们远比有理数更加一般),它们依然跟整数有一样的势。这里可能有一个错误:代数数集合不是可数集合。
实数集的加法定理、乘法定理和完备公理:
1、加法定理
对于任意属于集合R的元素a、b,可以定义它们的加法a+b,且a+b属于R;加法有恒元0,且a+0=0+a=a(从而存在相反数);加法有交换律,a+b=b+a;加法有结合律,(a+b)+c=a+(b+c)。
2、乘法定理
对于任意属于集合R的元素a、b,可以定义它们的乘法a·b,且a·b属于R;乘法有恒元1,且a·1=1·a=a(从而除0外存在倒数);乘法有交换律,a·b=b·a;乘法有结合律,(a·b)·c=a·(b·c);乘法对加法有分配律,即a·(b+c)=(b+c)·a=a·b+a·c。
3、完备公理
任何一个非空有上界的集合(包含于R)必有上确界。设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<c<y。符合以上四组公理的任何一个集合都叫做实数集,实数集的元素称为实数。
关于“公理集合论的原理简介”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[穰璐莹]投稿,不代表五洲号立场,如若转载,请注明出处:https://mip.tzwzszyy.cn/zlan/202507-3772.html
评论列表(3条)
我是五洲号的签约作者“穰璐莹”
本文概览:网上有关“公理集合论的原理简介”话题很是火热,小编也是针对公理集合论的原理简介寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。19世纪7...
文章不错《公理集合论的原理简介》内容很有帮助